1.

If `a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b)`is always`lt=1/2(a+b+c)``geq1/3sqrt(a b c)``lt=1/3(a+b+c)``geq1/2sqrt(a b c)`A. `le (1)/(2)(a+b+c)`B. `ge (1)/(2)sqrt(abc)`C. `le (1)/(3)(a+b+c)`D. `ge (1)/(2)sqrt(abc)`

Answer» Correct Answer - A
Using A.M and H.M inequalit, we get
`(2 bc)/(b + c) le (b + c)/(2), (2 ac)/(a + c) le (a + c)/(2), (2ab)/(a + b) le (a + b)/(2)`
Adding, `(bc)/(b + c) + (ac)/(a + c) + (ab)/(a + b) le (1)/(2) (a + b + c)`


Discussion

No Comment Found