InterviewSolution
| 1. |
If A + B + C = π, prove that sin 2A + sin 2B – sin 2C = 4cos A cos B sin C |
|
Answer» sin 2A + sin 2B – sin 2C = 2 sin (B + C) cos A + 2 sin (A + C) cos B - 2 sin (A + B) cos C Using formula, sin (A + B) = sin A cos B + cos A sin B = sin 2A + sin 2B - sin 2C Using formula sin2A = 2sinAcosA = 2sinAcosA + 2sinBcosB - 2sinCcosC Since A + B + C = π → B + C = 180 - A And sin(π – A) = sinA = 2sin(B + C)cos A + 2sin(A + C)cosB - 2sin(A + B)cosC = 2 ( sin B cos C + cos B sin C ) cos A + 2(sinAcosC + cosAsinC)cosB - 2(sinAcosB + cosAsinB )cosC = 2cosAsinBcosC + 2cosAcosBsinC + 2sinAcosBcosC + 2cosAcosBsinC– 2sinAcosBcosC – 2cosAsinBcosC = 2cosAcosBsinC + 2cosAcosBsinC = 4cosAcosBsinC = R.H.S |
|