1.

If A + B + C = π, prove that tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

Answer»

tan 2A + tan 2B + tan 2C 

Since A + B + C = π 

A + B = π – C 2A + 2B = 2π – 2C 

Tan (2A+2B) = tan (2π – 2C) 

Since tan (2π – C) = -tan C 

Tan (2A + 2B) = -tan 2C 

Now using formula,

Tan (A + B) = \(\frac{tanA+ tanB}{1-tanA\,tanB}\)

\(\frac{tan2A+ tan2B}{1-tan2A\,tan2B}\) = - tan 2C

Tan 2A + tan 2B = -tan 2C + tan 2C tan 2B tan 2A 

Tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C 

= R.H.S



Discussion

No Comment Found