InterviewSolution
Saved Bookmarks
| 1. |
If A + B + C = π, prove that tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C |
|
Answer» tan 2A + tan 2B + tan 2C Since A + B + C = π A + B = π – C 2A + 2B = 2π – 2C Tan (2A+2B) = tan (2π – 2C) Since tan (2π – C) = -tan C Tan (2A + 2B) = -tan 2C Now using formula, Tan (A + B) = \(\frac{tanA+ tanB}{1-tanA\,tanB}\) \(\frac{tan2A+ tan2B}{1-tan2A\,tan2B}\) = - tan 2C Tan 2A + tan 2B = -tan 2C + tan 2C tan 2B tan 2A Tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C = R.H.S |
|