InterviewSolution
Saved Bookmarks
| 1. |
If A + B = \(\frac{\pi}{4},\)then prove that (1 + tan A) (1 + tan B) = 2. |
|
Answer» Given, A + B = \(\frac{\pi}{4}\) Taking tangent both sides, we get tan(A + B) = tan\(\frac{\pi}{4}\) or, \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}=1\) or, tan A + tan B = 1 – tan A tan B or, tan A + tan B + tan A tan B = 1 Now, adding 1 both sides, we get tan A + tan B + tan A tan B + 1 = 2 (tan A + 1) + tan B (1 + tan A) = 2 or, (tan A + 1) (1 + tan B) = 2 or, (1 + tan A) (1 + tan B) = 2 |
|