InterviewSolution
Saved Bookmarks
| 1. |
If A=\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\), then ________(a) |2A|=4|A|(b) |2A|=2|A|(c) |A|=2|A|(d) |A|=|4A|This question was posed to me by my school teacher while I was bunking the class.Question is from Properties of Determinants in portion Determinants of Mathematics – Class 12 |
|
Answer» RIGHT choice is (a) |2A|=4|A| Easiest explanation: Given that, A=\(\begin{BMATRIX}1&3\\2&1\end{bmatrix}\) 2A=2\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\)=\(\begin{bmatrix}2&6\\4&2\end{bmatrix}\) |2A|=\(\begin{vmatrix}2&6\\4&2\end{vmatrix}\)=(4-24)=-20 4|A|=4\(\begin{vmatrix}1&3\\2&1\end{vmatrix}\)=4(1-6)=4(-5)=-20 ∴|2A|=4|A|. |
|