

InterviewSolution
Saved Bookmarks
1. |
If A = \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\),then An (where n ∈ N) equals :A. \(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) B. \(\begin{bmatrix} 1 &n^2a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) C. \(\begin{bmatrix} 1 &na \\[0.3em] 0 &0 \\[0.3em] \end{bmatrix}\)D.\(\begin{bmatrix} n &na \\[0.3em] 0 &n \\[0.3em] \end{bmatrix}\) |
Answer» (A). \(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) A = \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) An = \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)x \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)x\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)x\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) {n times, (where n ∈ N)} An = \(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) Option (A) is the answer. |
|