1.

If A = \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\),then An (where n ∈ N) equals :A. \(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) B. \(\begin{bmatrix} 1 &n^2a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) C. \(\begin{bmatrix} 1 &na \\[0.3em] 0 &0 \\[0.3em] \end{bmatrix}\)D.\(\begin{bmatrix} n &na \\[0.3em] 0 &n \\[0.3em] \end{bmatrix}\)

Answer»

(A). \(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) 

A = \(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) 

An\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)x\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)x\(\begin{bmatrix} 1 &a \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)

{n times, (where n ∈ N)}

An\(\begin{bmatrix} 1 &na \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)

Option (A) is the answer. 



Discussion

No Comment Found

Related InterviewSolutions