InterviewSolution
Saved Bookmarks
| 1. |
If a cos 60° = b cosec 45° then find the value of 7(a/2b)2?1. 142. 213. 74. 8 |
|
Answer» Correct Answer - Option 1 : 14 Given: It is given that a cos 60° = b cosec 45° Formula Used: Basic concept of trigonometric ratio and identities We know that Cos 60° = 1/2 and cosec 45° = √2 Calculation: We have to find the value of 7(a/2b)2 = 7a2/4b2 By rearranging the terms we get ∴ a/b = cosec 45°/ Cos 60° ⇒ a/b = 2√2 Now, squaring both the sides ∴ (a/b)2 = (2√2)2 ⇒ a2/b2 = 8 Now, multiply both the side by 7/4 ∴ 7/4 × a2/b2 = 7/4 × 8 = 14 Hence, option (1) is correct |
|