InterviewSolution
Saved Bookmarks
| 1. |
If a curve `y=f(x)`passes through the point `(1,-1)`and satisfies the differentialequation `,y(1+x y)dx""=x""dy`, then `f(-1/2)`is equal to:(1) `-2/5`(2) `-4/5`(3) `2/5`(4) `4/5`A. (a) -2/5B. (b) -4/5C. (c) 2/5D. (d) 4/5 |
|
Answer» Correct Answer - (d) Given differential equation is `y(1+xy)dx=x dy` `rArr y dx+xy^(2)dx=x dy` `rArr (x dy- y dx)/y^(2) =x dx` `rArr -((x dy- y dx))/y^(2) =x dx rArr -d (x/y)=x dx` On integrating both sides, we get `-x/y=x^(2)/2+C …(i)` `therefore` It passes through (1,-1). `therefore 1=1/2+C rArr C=1/2` Now, from Eq. (i) `-x/y=x^(2)/2+1/2` ` rArr x^(2)+1=-(2x)/y` ` rArr y=-(2x)/(x^(2)+1)` `therefore f(-1/2)=4/5` |
|