1.

If `a gt 0,bgt 0,cgt0 and 2a +b+3c=1`, thenA. `a^4b^2c^2` is greatest then `a=(1)/(4)`B. `a^4b^2c^2` is greatest then `b=(1)/(4)`C. `a^4b^2c^2` is greatest then `c=(1)/(12)`D. greatest value of `a^4b^2c^2 is (1)/(9.4^8)`

Answer» Correct Answer - A::B::C::D
A.M. `ge` G.M
`implies ((2a)/(4) + (2a)/(4) + (2a)/(4) + (2a)/(4) + (b)/(2) + (b)/(2) + (3c)/(2) + (3c)/(2))/(8)`
`ge .^(8)sqrt((2a)/(4).(2a)/(4).(2a)/(4).(2a)/(4).(b)/(2).(b)/(2).(3c)/(2).(3c)/(2))`
`implies (2a + b + 3c)/(8) ge ((3^(2))/(2^(8)) a^(4) b^(2) c^(2))^(1/8)`
The greatest value takes place when A.M =G.M ad
`(2a)/(4) = (b)/(2) = (3c)/(2)`
`implies a = b = 3c = K`
Now, `2a + b + 3c = 1`
`implies 2K + K + K = 1`
`implies K = 1//4`
`implies a = b = 1//4` and `c = 1//12`


Discussion

No Comment Found