1.

If `((a+i)^2)/((2a-i))=p+i q ,`show that: `p^2+q^2=((a^2+1)^2)/((4a^2+1))`.

Answer» `(a+i)^2/(2a-i) = p+iq->(1)`
`:. bar((a+i)^2/bar(2a-i)) = p-iq`
`=>(a-i)^2/(2a+i) = p-iq->(2)`
Multiplying (1) and (2),
`((a+i)^2(a-i)^2)/((2a-i)(2a+i)) = (p+iq)(p-iq)`
`=>((a+i)(a-i))^2/(4a^2 - i^2) = p^2-i^2q^2`
`=>(a^2-i^2)^2/(4a^2+1) = p^2+q^2 ...[As i^2 = -1]`
`=>(a^2+1)^2/(4a^2+1) = p^2+q^2`


Discussion

No Comment Found

Related InterviewSolutions