1.

If `(a^n+b^n)/(a^(n-1)+b^(n-1))` is the AM between a and b, then the value of n is

Answer» Correct Answer - B
Since `(a^(n)+b^(n))/(a^(n-1)+b^(n-1))` is Am of a and b.
`:." "(a^(n)+b^(n))/(a^(n-1)+b^(n-1))=(a+b)/(2)`
`rArr" "2a^(n)+2b^(n)=a^(n)+b^(n)+ab^(n-1)+a^(n-1)b`
`rArr" "a^(n-1)(a-b)=b^(n-1)(a-b)`
`rArr" "((a)/(b))^(n-1)=1rArrn-1=0rArrn=1`
ALITER We have,
`(a^(n)+b^(n))/(a^(n-1)+b^(n-1))(a+b)/(2)`
`rArr" "(a^(n)+b^(n))/(a^(n-1)+b^(n-1))=(a+b)/(2)=(a^(1)+b^(1))/(a^(0)+b^(0))`
On comparing the two sides, we obtain n=0.


Discussion

No Comment Found

Related InterviewSolutions