 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If a `nebne0,` prove that the points `(a,a^(2)),(b,b^(2)),(0,00)` will not be colliear. | 
| Answer» Let the 3 points A `-=(a,a^(2)),B-=(b,b^(2))and C-=(0,0)` from a triangle ABC. `therefore` Area of `DeltaABC=1/2|a(b^(2)-0)+b(0-a^(2))+0(a^(2)-b^(2))|` `=1/2[ab^(2)-a^(2)b]=1/2ab(b-a)ne0" "(becauseanebne0)` So, `DeltaABC` will be formed. Therefore 3 points A, B and C will not be collinear. | |