

InterviewSolution
Saved Bookmarks
1. |
If `alpha,beta ` be the roots of the equation `3x^2+2x+1=0,` then find value of `((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3` |
Answer» Let `(1-alpha)/(1+alpha)=ximpliesa=(1-x)/(1+x)` So replacing `x` by `(1-x)/(1+x)` in the given equation we get `3((1-x)/(1+x))^(2)+2((1-x)/(1+x))|+1=0impliesx^(2)-2x+3=0` …….i It is clear that `(1-alpha)/(1+alpha)` and `(1-beta)/(1+beta)` are the roots fo Eq. (i) `:.((1-alpha)/(1+alpha))+((1-beta)/(1+beta))=2`..........ii and `((1-alpha)/(1+alpha))((1-beta)/(1+beta))=3`.......iii `:.((1-alpha)/(1+alpha))^(3)+((1-beta)/(1+beta))^(3)=((1-alpha)/(1+alpha) +(1-beta)/(1+beta))^(3)-3` `((1-alpha)/(1+alpha))((1-beta)/(1+beta))((1-alpha)/(1+alpha)+(1-beta)/(1+beta))=2^(3)-3.3.2=8-18=-10` |
|