InterviewSolution
Saved Bookmarks
| 1. |
If `alpha < beta < gamma` and `sin gamma cos alpha=1,` where `alpha,gamma in[pi,2 pi],` then the least integral value of `f(x) = | x - alpha| + | x - beta| + |x - gamma|` is |
|
Answer» Correct Answer - C `sin gamma.cos alpha =1 alpha, gamma in [pi, 2pi]` `therefore sin gamma = cos alpha =1` `rArr gamma = pi//2, alpha = 2pi` (rejected) `(as alpha lt beta lt gamma)` Other possibility is `sin gamma = cos alpha =-1 rArr gamma = 3 pi//2, alpha = pi` `f(x)|_(min)=f(beta)=beta-alpha+0+gamma-beta` `=gamma -alpha` `=(3pi)/(2)-pi=(pi)/(2)` `f(x)ge pi//2 rArr` least integral value of f(x) is 2. |
|