InterviewSolution
Saved Bookmarks
| 1. |
If `alpha+beta90^(@)` then the expression `(tanalpha)/(tanbeta)+sin^(2)alpha+sin^(2)beta` is equal to:A. `tan^(2)alpha`B. `tan^(2)beta`C. `sin^(2)beta`D. `sec^(2)beta` |
|
Answer» Correct Answer - d Given: `alpha+beta=90^(@)` to find `(tanalpha)/(tan beta)+sin^(@)alpha+sin^(2)beta=?` `becausealpha+beta=90^(@)` `rArralpha=90-beta` `rArralpha,beta` are complementary angles `rArr(tan alpha)/(tan(90-alpha))+sin^(2)alpha+sin^(2)(90-alpha)` `rArr(tanalpha)/(cotalpha)+sin^(2)alpha+cos^(2)alpha` `rArrtan^(2)alpha+1` `(because sin^(2)alpha+cos^(2)alpha=1)` `rArrsec^(2)alpha(because 1+tan^(2)alpha=sec^(2)alpha)` |
|