

InterviewSolution
1. |
If \( \begin{bmatrix}9&-1 &4 \\[0.3em]-2 & 1 &3\\[0.3em]\end{bmatrix}\) = A +\( \begin{bmatrix}1&2 &-1 \\[0.3em]0 & 4 &9\\[0.3em]\end{bmatrix}\) , then find matrix A. |
Answer» We are given that, \( \begin{bmatrix}9&-1 &4 \\[0.3em]-2 & 1 &3\\[0.3em]\end{bmatrix}\) = A +\( \begin{bmatrix}1&2 &-1 \\[0.3em]0 & 4 &9\\[0.3em]\end{bmatrix}\) We need to find the matrix A. In order to find A, Shift the matrix in addition with A to left hand side of the equation. Just like in algebraic property, X = A + Y ⇒ A = X – Y Similarly, \( \begin{bmatrix}9&-1 &4 \\[0.3em]-2 & 1 &3\\[0.3em]\end{bmatrix}\) = A +\( \begin{bmatrix}1&2 &-1 \\[0.3em]0 & 4 &9\\[0.3em]\end{bmatrix}\) ⇒ A = \( \begin{bmatrix}9&-1 &4 \\[0.3em]-2 & 1 &3\\[0.3em]\end{bmatrix}\) - \( \begin{bmatrix}1&2 &-1 \\[0.3em]0 & 4 &9\\[0.3em]\end{bmatrix}\) Subtraction in matrices is done by subtraction of corresponding elements in the matrices. ⇒ A = \( \begin{bmatrix}9-1&-1-2 &4-(-1) \\[0.3em]-2-0 & 1-4 &3-9\\[0.3em]\end{bmatrix}\) ⇒ A = \( \begin{bmatrix}8&-3 &5 \\[0.3em]-2 & -3 &-6\\[0.3em]\end{bmatrix}\) Thus, We get A = \( \begin{bmatrix}8&-3 &5 \\[0.3em]-2 & -3 &-6\\[0.3em]\end{bmatrix}\). |
|