

InterviewSolution
1. |
If \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\), find the value of x and y. |
Answer» We are given with, \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\) We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, x + 3 = 5 …(i) 4 = 4 y – 4 = 3 …(ii) x + y = 9 …(iii) To solve for x and y, We have three equations (i), (ii) and (iii). From equation (i), x + 3 = 5 ⇒ x = 5 – 3 ⇒ x = 2 From equation (ii), y – 4 = 3 ⇒ y = 3 + 4 ⇒ y = 7 We need not solve equation (iii) as we have got the values of x and y, Thus, The values of x = 2 and y = 7. |
|