1.

If\( \begin{bmatrix}x &x-y \\[0.3em]2x+y & 7\\[0.3em]\end{bmatrix}\)= \( \begin{bmatrix}3 &1 \\[0.3em]8 & 7\\[0.3em]\end{bmatrix}\), then find the value of y.

Answer»

We are given that,

\( \begin{bmatrix}x &x-y \\[0.3em]2x+y & 7\\[0.3em]\end{bmatrix}\)= \( \begin{bmatrix}3 &1 \\[0.3em]8 & 7\\[0.3em]\end{bmatrix}\)

We need to find the value of y. 

We know by the property of matrices,

 \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\)

This implies, 

a11 = b11

a12 = b12

a21 = b21 and

 a22 = b22 

So, if we have

\( \begin{bmatrix}x &x-y \\[0.3em]2x+y & 7\\[0.3em]\end{bmatrix}\)= \( \begin{bmatrix}3 &1 \\[0.3em]8 & 7\\[0.3em]\end{bmatrix}\) 

Corresponding elements of two elements are equal.

That is,

x = 3 …(i) 

x – y = 1 …(ii) 

2x + y = 8 …(iii) 

7 = 7 

To solve for y, 

We have equations (i), (ii) and (iii). 

From equation (i),

x = 3 

Substituting the value of x = 3 in equation (ii), 

x – y = 1 

⇒ 3 – y = 1 

⇒ y = 3 – 1 

⇒ y = 2 

Thus, 

We get y = 2.



Discussion

No Comment Found

Related InterviewSolutions