InterviewSolution
Saved Bookmarks
| 1. |
If complex number z=x +iy satisfies the equation `Re (z+1) = |z-1|`, then prove that z lies on `y^(2) = 4x`. |
|
Answer» We have `Re(z+1) = |z-1|` `rArr Re (x+iy+1) = |x + iy-1|` `rArr x + 1 = sqrt((x-1)^(2) + y^(2)))` `rArr (x+1)^(2) = (x+1)^(2) + y^(2)` `rArr y^(2) = 4x` Thus, z lies on `y^(2) = 4x`. |
|