InterviewSolution
Saved Bookmarks
| 1. |
If ` ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha)` then cos x =A. `cos x=(cos alpha+cos beta)/(1-cos alpha cos beta)`B. `cos x=(cos alpha+cos beta)/(1-cos alpha cos beta)`C. `tan.(x)/(2)=tan.(alpha)/(2)tan.(beta)/(2)`D. `tan.(x)/(2)=-tan.(alpha)/(2)tan.(beta)/(2)` |
|
Answer» Correct Answer - A::C::D From the given redults `cos x sin^(2)bet cos alpha - cos^(2) alpha sin^(2)beta` `= sin^(2) alpha cos beta cos x - sin^(2) alpha cos^(2) beta` `rArr os x[cos alpha sin^(2)beta - sin^(2) alpha cos beta]` `= cos^(2)alpha sin^(2)beta-sin^(2)alpha cos^(2) beta` `rArr cos x=(cos^(2)alpha[1-cos^(2)beta]-(1-cos^(2)alpha)cos^(2)beta)/(cos alpha[1-cos^(2)beta]-[1-cos^(2)alpha[cos beta)` `=(cos^(2)alpha-cos^(2)beta)/((cos alpha-cos beta)(cos alpha cos beta+1))` `=(cos alpha + cos beta)/(1+cos alpha cos beta)` `rArr (co x)/(1)=(cos alpha + cos betA)/(1+cos alpha cos beta)` `rarr (1-cos x)/(1+cos x)=(1+cos alpha cos beta - cos alpha - cos beta)/(1+cos lapha cos beta + cos alpha + cos beta)` `=((1-cos alpha)(1-cos beta))/((1+cos alpha)(1+cos beta))` `rArr "tan"^(2)(x)/(2)="tan"^(2)(alpha)/(2)."tan"^(2)(beta)/(2)` `rArr tan.(x)/(2)= pm tan.(alpha)/(2)tan.(beta)/(2)` |
|