| 1. |
if cosec A = 17/8,tgen verify that 3-4sin^2A/4cos^2a-3=3-tan^2A/1-3tan^2A THE FIRST ANSWER WILL BE BRAINLIEST |
|
Answer» Step-by-step EXPLANATION: show that = 4cos 2 A−3 3−4sin 2 A
= 1−3tan 2 A. 3tan 2 A
GIVEN sec A = 8 17
We know, sec A = Base Hypotenuse
= 8 17
So, draw a right angled TRIANGLE PQR, right angled at Q such that ∠ PQR = A Base QR = 8 and Hypotenuse PR = 17 Using Pythagoras Theorem in Δ PQR PR² = PQ² + QR² ⇒ (17)² = PQ² + (8)² ⇒ 289 = PQ² + 64 ⇒ PQ² = 289 - 64 ⇒ PQ² = 225 ⇒ PQ = 15 L.H.S. = 3-4sin²A/4cos²A-3 ⇒ 3-4(15/17)²/4(8/17)² - 3 ⇒ 3-4×(225/289)/4×(64/289) - 3 ⇒ {(867-900)/289}/{(256-867)/289} ⇒ -33/289 × 289/-611 = 33/611 R.H.S = (3-tan²A)/(1-3tan²A) ⇒ 3-(15/8)²/1-3(15/8)² ⇒ 3 - (255/64)/1 - (675/64) ⇒ -33/64 × 64/-611 ⇒ 33\611 So, L.H.S. = R.H.S. |
|