InterviewSolution
Saved Bookmarks
| 1. |
If cot α = \(\frac{1}{2}\),sec β = \(\frac{-5}{3}\),where π < α < \(\frac{3\pi}{2}\) and \(\frac{\pi}{2}\) < β < π. Find value of tan (α + β). |
|
Answer» Given, sec β = \(\frac{-5}{3}\) sec2β = \(\frac{25}{9}\) tan2β = \(\frac{25}{9}\)-1 = \(\frac{16}{9}\) tan β = ±\(\frac{4}{3}\) tan β = \(\frac{-4}{3}\) (\(\frac{\pi}{2}\)< β < π) And, cot α = \(\frac{1}{2}\) ∴ tan α = 2, (∵ \(\frac{\pi}{2}\)< α <\(\frac{3\pi}{2}\)) Now, tan (α + β) = \(\frac{tanα+tanβ}{1-tanα\,tanβ}\) \(= \frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}\) = \(\frac{6-4}{3+8}\) = \(\frac{2}{11}\) |
|