1.

If \(\cot \theta = \frac{1}{{\sqrt 3 }}\), 0°

Answer» Correct Answer - Option 1 : 1

Given:

\(\cot \theta = \frac{1}{{\sqrt 3 }}\)

θ = 60°

Calculation:

 sin 60° =\(\frac{{\sqrt 3 }}{2}\)  

 cos 60° = \(\frac{1}{2}\)

 cosec 60° =\(\frac{2}{\sqrt3}\)

 sec 60° = 2 

substituting the value in the given expression  

 = \(\frac{2-\frac{3}{4}\ }{1-\frac{1}{4}}+(\frac{4}{3}\ -2)\) ⇒\(\frac{\frac{5}{4}\ }{\frac{3}{4}}-\frac{2}{3}\)

 = \(\frac{{5\;}}{3} - \frac{2}{3} = 1\)

∴ the value for the \(\frac{{2 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} + (cose{c^2}\theta - {\sec} \theta )\) = 1



Discussion

No Comment Found

Related InterviewSolutions