InterviewSolution
Saved Bookmarks
| 1. |
If `[.]` denotes the greatest intger function, then `lim_(xrarr0) (tan([-2pi^2]x^2)-x^2tan[-2pi^2])/(sin^2x)` is equal toA. `20 +tan 20`B. `20+tan 20`C. `20`D. none of these |
|
Answer» Correct Answer - A We have, `[-2pi^2]=-20`. `therefore lim_(xto0) (tan([-2pi^2]x^2)-x^2tan[-2pi^2])/(sin^2x)` `=lim_(xto0) (tan(-20x^2)-x^2tan(-20))/(sin^2x)` `=lim_(xto0) -(tan20x^2)/(20x^2)xx20xx(x^2)/(sin^2x)xx((x)/(sinx))^2tan20 =-20+tan20`. |
|