1.

If E, M, L and G denote energy, mass, angular momentum and universal Gravitational constant respectively, prove that(EL^(2))/(M^(5)G^(2)) is a dimensionless quantity .

Answer»

SOLUTION :Taking dimensional formulac energy `( E)= ML^(2)T^(-2)`
Universal GRAVITATIONAL CONSTANT (G) = `M^(-1) L^(3)T^(-2)`
SUBSTITUTING in `(EL^(2))/(M^(5)G^(2))` we get
`((ML^(2)T^(-2))(ML^(2)T^(-1))^(2))/((ML^(0)T^(-0))^(5)(M^(-1)L^(3)T^(-2))^(2))=(M^(1+2)L^(2+4)T^(-2-2))/(M^(502)L^(0+6)T^(0-4))`
= A dimensionless quantity .


Discussion

No Comment Found

Related InterviewSolutions