 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If each diagonal of a quadrilateral separates itinto two triangles of equal area then show that the quadrilateral is aparallelogram.GIVEN : A quadrilateral `A B C D`such that its diagonals `A C`and `B D`are such that `a r( A B D)=a r( C D B`) and `a r( A B C)=a r( A C D)dot`TO PROVE: Quadrilateral `A B C D`is a parallelogram. | 
| Answer» Since AC is the diagonal `ar(/_ABC)=ar(/_ACD)` `ar(/_ABC)+ar(/_ACD)=ar(ABCD)` `ar(/_ABC)=1/2ar(ABCD)-(1)` Since,BD is the diagonal `ar(/_ABD)=ar(/_CBD)` `ar(/_ABD)+ar(/_CBD)=ar(ABCD)` `ar(/_ABD)=1/2ar(ABCD)-(2)` AB||CD AD||BC It is a parallelogram. | |