1.

If each diagonal of a quadrilateral separates itinto two triangles of equal area then show that the quadrilateral is aparallelogram.GIVEN : A quadrilateral `A B C D`such that its diagonals `A C`and `B D`are such that `a r( A B D)=a r( C D B`) and `a r( A B C)=a r( A C D)dot`TO PROVE: Quadrilateral `A B C D`is a parallelogram.

Answer» Since AC is the diagonal
`ar(/_ABC)=ar(/_ACD)`
`ar(/_ABC)+ar(/_ACD)=ar(ABCD)`
`ar(/_ABC)=1/2ar(ABCD)-(1)`
Since,BD is the diagonal
`ar(/_ABD)=ar(/_CBD)`
`ar(/_ABD)+ar(/_CBD)=ar(ABCD)`
`ar(/_ABD)=1/2ar(ABCD)-(2)`
AB||CD
AD||BC
It is a parallelogram.


Discussion

No Comment Found

Related InterviewSolutions