1.

If f : (0, ∞) → (0, ∞) and f (x) = \(\frac{x}{1+x}\) ,  then the function f is(a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto.

Answer»

Answer: (b) = one - one but not onto 

 ∀  (x, y) ∈ (0, ∞) 

f (x) = f (y) ⇒ \(\frac{x}{1+x}\) = \(\frac{y}{1+y}\) 

⇒ x + xy = y + xy 

⇒ x = y 

⇒ f is one-one 

Let z = f (x) = \(\frac{x}{1+x}\) 

⇒ z + zx = x

⇒ z = x (1 – z) ⇒ x = \(\frac{z}{1-z}\) 

⇒ x is not defined for z = 1 and 1 ∈ (0, ∞) 

∴  1 ∈ (0, ∞) has no pre-image in (0, ∞) 

⇒ f is not onto



Discussion

No Comment Found