

InterviewSolution
Saved Bookmarks
1. |
If `f:NtoR,` where `f(n)=a_(n)=(n)/((2n+1)^(2))` write the sequence in ordered pair from. |
Answer» Here, `a_(n)=(n)/((2n+1)^(2))` On putting `n=1,2,3,4,"….."` successively, we get `a_(1)=(1)/((2*1+1)^(2))=(1)/(9), a_(2)=(2)/(2*2+1)^(2)=(2)/(25)` `a_(3)=(3)/(2*3+1)^(2)=(3)/(49),a_(4)=(4)/(2*4+1)^2=(4)/(81)` `" "vdots " "vdots" "vdots` Hence, we obtain the sequence `(1)/(9),(2)/(25),(3)/(49),(4)/(81),"...."` Now, the sequence in ordered pair form is `{(1"",(1)/(9)),(2"",(20)/(25)),(3"",(3)/(49)),(4"",(4)/(81)),"..."}` |
|