

InterviewSolution
Saved Bookmarks
1. |
If `f:R->R and g:R-> R` are two mappings such that `f(x) = 2x and g(x)=x^2+ 2` then find `fog and gog`. |
Answer» (i) (gof) (x) = g [f(x)] = g (2x) = `(2x)^(2)+2= 4x^(2) + 2.` and (fog)(x) = f[g(x)] = `f(x^(2)+2) = 2(x^(2)+2)= 2x^(2) + 4` `:.` gof `ne` fog. Hence Proved. (ii) (fog) (2) = f[g(2)] = f(2^(2) + 2) = f(6) = 12. (gog)(1) = g [g(1)] = `g (1^(2)+2) = g (3) = 3^(2) + 2 = 11`. and (fof) (3) = f[f(3)] = f`(2xx3) = f(6) = 2xx6 = 12` Ans. |
|