1.

If `f: R-> R` is defined by (where [.] is g.i.f) `f(x) [x-3] + |x-4|` for `x in R` then `lim_(x->3^-) f(x) =`A. -2B. -1C. 0D. 1

Answer» Correct Answer - C
We have,
, `f(x)=(x)=[x-3]+|x-4|`
`therefore lim_(xto3^-)f(x)=lim_(xto3^-) [x-3]+lim_(xto3^-) |x-4|`
`rArr lim_(xto3^-) f(x) lim_(hto0) [3-h-3]+lim_(hto0) |3-h-4|`
`rArr lim_(xto3^-) f(x)=lim_(hto0) [-h]+lim_(hto0) |-1-h|`
`rArr lim_(xto3^-) f(x) lim_(hto0) -1 +lim_(hto0) (1+h)=-1+1=0`


Discussion

No Comment Found