InterviewSolution
Saved Bookmarks
| 1. |
If \(\ f(x) =\begin{cases}2x-1 \,, & \quad \text{when } x \leq 0\\x^2 \,, & \quad \text {when }x >0\end{cases}\) , then find \(f\big(\frac{3}{4}\big)\, \,and\,\, f\big(-\frac{3}{4}\big)\) . |
|
Answer» \(f\big(\frac{3}{4}\big)\) = \(\big(\frac{3}{4}\big)^2\) = \(\frac{9}{16}\) as f (x) = x2 when x > 0 \(f\big(-\frac{3}{4}\big)\) = 2 \(\times\) \(\big(\frac{-3}{4}\big)\) - 1 = \(-\frac{3}{2}\) -1 = \(-\frac{5}{2}\) as f (x) = 2x – 1 when x ≤ 0 |
|