1.

If \(\ f(x) =\begin{cases}2x-1 \,, & \quad \text{when } x \leq 0\\x^2 \,, & \quad \text {when }x >0\end{cases}\) , then find \(f\big(\frac{3}{4}\big)\, \,and\,\, f\big(-\frac{3}{4}\big)\) .

Answer»

\(f\big(\frac{3}{4}\big)\) = \(\big(\frac{3}{4}\big)^2\) = \(\frac{9}{16}\) as f (x) = x2 when x > 0

\(f\big(-\frac{3}{4}\big)\) =  \(\times\) \(\big(\frac{-3}{4}\big)\) - 1

\(-\frac{3}{2}\) -1 

\(-\frac{5}{2}\) as f (x) = 2x – 1 when x ≤ 0



Discussion

No Comment Found