1.

if  \(\ f(x) =\begin {cases}x\,, &\quad \text{if } x \text{ is rational}\\0\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) and  \(\ g(x) =\begin {cases}0\,, &\quad \text{if } x \text{ is rational}\\x\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) then f - g  is (a) neither one-one nor onto (b) one-one and onto (c) one-one and into (d) many-one and onto

Answer»

Answer : (b) = one - one and onto 

. (f – g) (x) = \(\ f(x) - g(x) =\begin {cases}x\,, &\quad \text{if } x \text{ is rational}\\-x\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) 

Distinct elements of R have distinct images in (f – g). 

Hence (f – g) is one-one. 

Also Range of (f – g) = R 

⇒ f is onto. 

⇒ (f – g) R → R is a one-one onto function



Discussion

No Comment Found