InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)=cos[pi^2]x ,`where `[x]`stands for the greatest integer function, then`f(pi/2)=-1`(b) `f(pi)=1``f(-pi)=0`(d) `f(pi/4)=1`A. `f(pi//2)= -1`B. `f(pi) =1`C. `f(-pi)=0`D. `f(pi//4)=1` |
|
Answer» Correct Answer - A::C Since, `f(x) =cos[pi^(2)]x+cos [-pi^(2)]x` `rArr f(x)=cos(9)x+cos(-10)x` ` " "["using " [pi^(2)]=9 and [-pi^(2)]= -10]` ` therefore f((pi)/(2))="cos" (9pi)/(2) + cos 5pi = -1` `f(pi)=cos 9pi +cos 10pi= -1+1=0` `f(-pi)=cos 9pi+cos 10pi= -1+1=0` `f((pi)/(4))="cos"(9pi)/(4)+"cos"(10pi)/(4)=(1)/(sqrt(2))+0=(1)/(sqrt(2))` Hence, (a) and (c) are correct options. |
|