1.

If f(x) = \(\frac{1}{1+\frac{1}{x}}\) ; g(x) = \(\frac{1}{1+ \frac{1}{f(x)}}\) , then g(2) equals(a) \(\frac{1}{5}\) (b) \(\frac{1}{25}\) (c) \(\frac{2}{5}\)(d) \(\frac{1}{16}\)

Answer»

Answer: (c) = \(\frac{2}{5}\) 

Given, f (x) = \(\frac{1}{1+\frac{1}{x}}\) and g(x) = \(\frac{1}{1+\frac{1}{f(x)}}\)

∴  f(x) = \(\frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}\) 

⇒ g(x) = \(\frac{1}{1+ \frac{1}{\frac{x}{x+1}}}\) 

\(\frac{1}{1+ \frac{x+1}{x}}\) = \(\frac{x}{2x+1}\) 

⇒ g(2) = \(\frac{2}{2\times 2+1}\) 

\(\frac{2}{5}\)



Discussion

No Comment Found