1.

If f(x) = \(\frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}\)  for x > 2, then f (11) equals(a) \(\frac{7}{6}\)(b) \(\frac{5}{6}\)(c) \(\frac{6}{7}\)(d) \(\frac{5}{7}\)

Answer»

Answer : (c) = \(\frac{6}{7}\)  

Given, f (x) = \(\frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}\)

⇒ f(11) = \(\frac{1}{\sqrt{11+2\sqrt{22-4}}} + \frac{1}{\sqrt{11-2\sqrt{22-4}}}\) 

\(\frac{1}{\sqrt{11+2\sqrt{18}}} + \frac{1}{\sqrt{11-2\sqrt{18}}}\) 

\(\frac{1}{\sqrt{11+6\sqrt{2}}} + \frac{1}{\sqrt{11-6\sqrt{2}}}\)

\(\frac{1}{\sqrt{(9+2\times 3\times \sqrt{2}+(\sqrt{2})^2)}} +\frac{1}{\sqrt{(9-2\times 3\times \sqrt{2}+(\sqrt{2})^2)}}\) 

\(\frac{1}{\sqrt{(3+\sqrt{2})^2}} + \frac{1}{\sqrt{(3-\sqrt{2})^2}}\) 

\(\frac{1}{{(3+\sqrt{2})}} +\frac{1}{{(3-\sqrt{2})}}\) 

\(\frac{3-\sqrt{2} +3+ \sqrt{2}}{(3+\sqrt{2})(3-\sqrt{2})}\)  = \(\frac{6}{9-2}\) 

\(\frac{6}{7}\)



Discussion

No Comment Found