InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)=(kx)/(x+1)`, where `xne-1andf{f(x)}=x" for "xne-1` then find the value of k. |
|
Answer» Correct Answer - `k=-1` `f(f(x))=f((kx)/(x+1))=((kxx(kx))/(x+1))/((kx)/(x+1)+1)=(k^(2)x)/(kx+x+1)=(k^(2)x)/(kx+x+1)=x`. `:.k^(2)=kx+x+1+impliesk^(2)-kx-(x+1)=0impliesk=(xpmsqrt(x^(2)+4(x+1)))/(2)=(xpm(x+2))/(2)` |
|