

InterviewSolution
Saved Bookmarks
1. |
If `f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2))`, then `f(g(x))`is equal to`f(3x)`(b) `{f(x)}^3`(c) `3f(x)`(d) `-f(x)` |
Answer» `f(g(x)) = f((3x+x^3)/(1+3x^2))` `=log((1+(3x+x^3)/(1+3x^2))/(1-(3x+x^3)/(1+3x^2)))` `=log((1+3x^2+3x+x^3)/(1+3x^2-3x-x^3))` `=log((1+x)^3/(1-x)^3)` `=log((1+x)/(1-x))^3` `=3log((1+x)/(1-x))` `=3f(x)` `:. f(g(x)) = 3f(x)` |
|