1.

If `f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2))`, then `f(g(x))`is equal to`f(3x)`(b) `{f(x)}^3`(c) `3f(x)`(d) `-f(x)`

Answer» `f(g(x)) = f((3x+x^3)/(1+3x^2))`
`=log((1+(3x+x^3)/(1+3x^2))/(1-(3x+x^3)/(1+3x^2)))`
`=log((1+3x^2+3x+x^3)/(1+3x^2-3x-x^3))`
`=log((1+x)^3/(1-x)^3)`
`=log((1+x)/(1-x))^3`
`=3log((1+x)/(1-x))`
`=3f(x)`
`:. f(g(x)) = 3f(x)`


Discussion

No Comment Found