1.

If f(x) = sin [π2] x + sin [-π2] x, where [x] denotes the greatest integer less than or equal to x, then A. f (π/2) = 1 B. f(π) = 2 C. f (π/4) = - 1 D. None of these

Answer»

π2 ≈ 9.8596

2] = 9 and

[-π2] = -10

Now, 

f(x) = sin[π2] x + sin[-π2]x 

= sin 9x - sin 10x 

Now, 

Checking values of f(x) at given points..

f(\(\frac{\pi}{2}\)) = sin 9(\(\frac{\pi}{2}\)) - sin 10(\(\frac{\pi}{2}\))

= 1-0 

= 1 

Option A is correct.. 

f(π) = sin 9π - sin 10π 

= 0 - 0 

= 0

f(\(\frac{\pi}{4}\)) = sin 9(\(\frac{\pi}{4}\)) - sin 10(\(\frac{\pi}{4}\))

\(\frac{1}{\sqrt 2}\) - 1

Option B & C are incorrect..



Discussion

No Comment Found