InterviewSolution
| 1. |
If \(\frac {\sec θ + \tan θ }{\sec θ - \tan θ } = 2 \frac {51}{79},\) then the value of sin θ is equal to:1. \(\frac {35}{72}\)2. \(\frac {91}{144}\)3. \(\frac {65}{144}\)4. \(\frac {39}{72}\) |
|
Answer» Correct Answer - Option 3 : \(\frac {65}{144}\) Given : (sec θ + tan θ)/(sec θ - tan θ) = 209/79 Calculations : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaci4CaiaacwgacaGGJbGaeqiUdeNaey4kaSIa % ciiDaiaacggacaGGUbGaeqiUdehapaqaa8qacaWGZbGaamyzaiaado % gacqaH4oqCcqGHsislcaWG0bGaamyyaiaad6gacqaH4oqCaaaaaa!4A3F! \frac{{\sec θ + \tan θ }}{{secθ - tanθ }}\)sec θ + tan θ)/(sec θ - tan θ) = 209/79 Cross multiply both the sides 79 sec θ + 79 tan θ = 209 sec θ - 209 tan θ ⇒ 288 tan θ = 130 sec θ ⇒ sin θ/cos θ = (130/288) (1/cos θ) ⇒ sin θ = 65/144 ∴The value of sinθ will be 65/144 |
|