1.

If I is the identity matrix and A is a square matrix such A2 = A, then what is the value of (I + A)2 – 3A?

Answer»

We are given that, 

I is the identity matrix. 

A is a square matrix such that A2 = A. 

We need to find the value of (I + A)2 – 3A. 

We must understand what an identity matrix is.

An identity matrix is a square matrix in which all the elements of the principal diagonal are ones and all other elements are zeroes.

Take,

(I+A)2 – 3A = (I)2+ (A)2 + 2(I)(A) – 3A 

[∵, by algebraic identity, 

(x+y)2 = x2 + y2 + 2xy] 

⇒(I+A)2 – 3A = (I)(I) + A2 + 2(IA) – 3A

By property of matrix, 

(I)(I) = I 

IA = A 

⇒(I+A)2 – 3A = I + A2 + 2A – 3A 

⇒(I+A)2 – 3A = I + A + 2A – 3A 

[∵, given in question, A2 = A] 

⇒ (I+A)2 – 3A = I + 3A – 3A 

⇒ (I+A)2 – 3A = I + 0 

⇒ (I+A)2 – 3A = I 

Thus, 

The value of (I+A)2 – 3A = I.



Discussion

No Comment Found

Related InterviewSolutions