1.

If in a sequence {an}, an = n! / nn, then the sequence converges to1. zero2. one3. two4. none of these

Answer» Correct Answer - Option 1 : zero

Calculation:

We have, 

⇒ \(a_n = \frac{1.2.3...n}{n.n.n...n}\)

⇒ \(a_n=(\frac{1}{n})(\frac{2}{n})(\frac{3}{n})...(\frac{n}{n})<\frac{1}{n}\)

Thus, 0 < a< 1/n

Taking limit as n-->∞, we have

⇒ 0 ≤ \(\mathop {\lim }\limits_{n \to \infty } a_n\) ≤ \(\mathop {\lim }\limits_{n \to \infty } (\frac{1}{n})\) = 0

Therefore, \(\mathop {\lim }\limits_{n \to \infty } a_n\) = 0

Hence the sequence  converges to zero.



Discussion

No Comment Found

Related InterviewSolutions