

InterviewSolution
Saved Bookmarks
1. |
If in a sequence {an}, an = n! / nn, then the sequence converges to1. zero2. one3. two4. none of these |
Answer» Correct Answer - Option 1 : zero Calculation: We have, ⇒ \(a_n = \frac{1.2.3...n}{n.n.n...n}\) ⇒ \(a_n=(\frac{1}{n})(\frac{2}{n})(\frac{3}{n})...(\frac{n}{n})<\frac{1}{n}\) Thus, 0 < an < 1/n Taking limit as n-->∞, we have ⇒ 0 ≤ \(\mathop {\lim }\limits_{n \to \infty } a_n\) ≤ \(\mathop {\lim }\limits_{n \to \infty } (\frac{1}{n})\) = 0 Therefore, \(\mathop {\lim }\limits_{n \to \infty } a_n\) = 0 Hence the sequence converges to zero. |
|