1.

`"If"int(dx)/(x^(3)(1+x^(6))^(23))=xf(x)(1+x^(6))^(1/3)+C` where, C is a constant of integration, then the function f(x) is equal toA. `-(1)/(2)`B. `-(1)/(6)`C. `-(6)/(x)`D. `-(x)/(2)`

Answer» Correct Answer - a
Let `=int(1)/(x^(3)(1+x^(6))^(2//3))dx` . Then
`I=int(1)/(7(1+(1)/(x^(6)))^(2//3))dx=-(1)/(6)int(1+(1)/(x^(6)))^(-2//3)d(1+(1)/(x^(6)))`
`rArrI=-(1)/(2)(1+(1)/(x^(6)))^(1//3)+C`
`rArrf(x)(1+x^(-6))^(1//3)+C=-(1)/(2)(1+x^(-6))^(1//3)+C`
`rArrf(x)=-(1)/(2)`.


Discussion

No Comment Found

Related InterviewSolutions