1.

If `int (e^x-1)/(e^x+1)dx=f(x)+C,` then f(x) is equal toA. `2log(e^(x)+1)+C`B. `log(e^(2x)-1)+C`C. `2log(e^(x)+1)-x+C`D. `log(e^(2x)+1)+C`

Answer» Correct Answer - c
We have , `int(e^(x)-1)/(e^(x)+1)dx`
`rArr = int(e^(x))/(e^(x)+1)dx-int(1)/(e^(x)+1)dx`
`rArr = int(1)/(e^(x)+1)d(e^(x)+1)+int(1)/(e^(-x)+1)d(e^(-x)+1)`
`rArr=log(e^(x)+1)+log(e^(-x)+1)+C`
`rArr=log(e^(x)+1)+log((e^(x)+1)/(e^(x)))+C`
`rArr=log(e^(x)+1)^(2)-loge^(x)+C=2log(e^(x)+1)-x+C`


Discussion

No Comment Found

Related InterviewSolutions