InterviewSolution
Saved Bookmarks
| 1. |
If `inte^(ax)cosbx dx=(e2x)/(29)f(x)+C` , then f' (x)=A. 29 f (x)B. `-29 f(x)`C. 25 f(x)D. `-25 f(x)` |
|
Answer» Correct Answer - d We have , `inte^(ax)cosbx dx=(e^(ax))/(a^(2)+b^(2))(a cos bx +b sinbx)+C` `rArr(e^(2x))/(2^(2)+5^(2))f(x)+C (e^(ax))/(a^(2)+b^(2))(a cos bx +b sin bx)+C` `rArr a=2 , b =5 and f(x) =a cos bx +b sin dx` `rArr f ' (x) =-b^(2)f(x)rArrf'(x)=-25f(x)` |
|