InterviewSolution
Saved Bookmarks
| 1. |
If `k>0`, `|z|=w=k`, and `alpha=(z-bar w)/(k^2+zbar(w))`, then `Re(alpha)` (A) 0 (B) `k/2` (C) `k` (D) None of these |
|
Answer» Correct Answer - A `alpha=(z-barw)/(k^(2)+zbarw)rArr baralpha=(barz-w)/(k^(2)+barzw)` But `zbarz =wbarw =k^(2)`. Hence, `rArr " "baralpha=((k^(2))/(z)-(k^(2))/(barw))/(k^(2)+(k^(2))/(z)(k^(2))/(barw))=(barw-z)/(zbarw+k^(2))=-alpha` `rArralpha+baralpha=0` `rArr Re(alpha)=0` |
|