InterviewSolution
Saved Bookmarks
| 1. |
If `l =lim_(xrarr0) (tanx^(n))/((tanx)^m)`, where `m,n in N`, thenA. `l=1 " for all " m,n in N`B. `l={(1" if "n gt m,,),(0" if "n lt m,,):}`C. `l={(1" if "n = m,,),(0" if "n gt m,,):}`D. `l=0 " for all " m,n in N` |
|
Answer» Correct Answer - C We have, ` l=lim_(xto0) (tanx^n)/((tanx)^m)` ` rArr l=lim_(xto0) ((tanx^n)/(x^n))xx(x^n)/(x^m)xx((x)/(tanx))^m` ` rArr l=lim_(xto0) 1xx x^(n-m)xx1` `rArr l=lim_(xto0) x^(n-m)rArr l={(0,if,ngtm,),(1,if,n=m,),(oo,if,n=m,):}` |
|