InterviewSolution
Saved Bookmarks
| 1. |
If `L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3))` exists infinetely then The value of a is |
|
Answer» Correct Answer - C `L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3))` `=underset(xtooo)lim(((x+1)^(2)-(ax^(2)+x+3))/(x+1+sqrt(ax^(2)+x+3)))` `=underset(xtooo)lim(((1-a)x^(2)+x-2)/(x+1+sqrt(ax^(2)+x+3)))` L exists finitely if `1-a=0" or "a=1` `:." "L=underset(xtooo)lim((x-2)/(x+1+sqrt(x^(2)+x+3)))` `=underset(xtooo)lim((1-(2)/(x))/(1+(1)/(x)+sqrt(1+(1)/(x)+(3)/(x^(2)))))` |
|