1.

If lamda=c_(2)[(n^(2))/(n^(2)-Z^(2))] for Balmer series what is the value of C_(2)?

Answer»

`r/(R_(H))`
`2/(R_(H))`
`2R_(H)`
`4R_(H)`

Solution :`LAMDA=C_(2)[(N^(2))/(n^(2)-Z^(2))]implies1/(lamda)=1/(C_(2))[(n^(2)-Z^(2))/(n^(2))]`
`implies1/(lamda)=1/(C_(2))[1-(Z^(2))/(n^(2))]`
`=(Z^(2))/(C_(2))[1/(Z^(2))-1/(n^(2))]`
`:.R_(Y)=(Z^(2))/(C_(2))impliesC_(2)=4/(R_(H))`
Hence a is the correct answer.


Discussion

No Comment Found