InterviewSolution
Saved Bookmarks
| 1. |
If\(\lim\limits_{\text x \to a}\cfrac{\text x^3-a^3}{\text x-a}=\lim\limits_{\text a\to1}\cfrac{\text x^4-1}{\text x-1}\)lim(x→a) (x3 - a3)/(x - a) = lim(x→1) (x4 - 1)/(x - 1),find all possible values of a. |
|
Answer» Given, \(\lim\limits_{\text x \to a}\cfrac{\text x^3-a^3}{\text x-a}=\lim\limits_{\text a\to1}\cfrac{\text x^4-1}{\text x-1} \) Note: To solve the problems of limit similar to one in our question we use the formula mentioned below which can be derived using binomial theorem. Formula to be used:\(\lim\limits_{\text x \to a}\cfrac{(\text x)^n-(a)^n}{\text x-a} \)= nan -1 Using the formula we have – 3a3–1 = 4(1)4–1 ⇒ 3a2 = 4 ⇒ a2 = 4/3 ∴ a = ± (2/√3) |
|