InterviewSolution
Saved Bookmarks
| 1. |
If `lim_(x to 0) (cos4x+acos2x+b)/(x^(4))` is finite, find a and b using expansion formula. Also, find the limit. |
|
Answer» `underset(xto0)lim(cos4x+acos2x+b)/(x^(4))="Finite"` Using expansion formula for `cos4x" and "cos2x,` we get `underset(xto0)lim((1-(4x)^(2)/(2!)+(4x)^(4)/(4!))+a(1-(2x)^(2)/(2!)+(2x)^(4)/(4!))+b)/(x^(4))` or `" "underset(xto0)lim((1+a+b)+(-8-2a)x^(2)+((32)/(3)+2/3a)x^(4)+...)/(x^(4))` or `" "1+a+b=0` `-8-2=0` Solving (1) and (2) for a and b, we get `a=-4" and " b=3` Also, Limit`=32/3+2/3a=(32-8)/(3)=8` |
|